These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Clonidine fails to modify dopaminergic neuronal activity during morphine withdrawal. Author: Gobbi G, Muntoni AL, Gessa GL, Diana M. Journal: Psychopharmacology (Berl); 2001 Oct; 158(1):1-6. PubMed ID: 11685378. Abstract: RATIONALE: Cellular substrates of opiate withdrawal syndrome involve several brain areas, in particular the mesolimbic dopaminergic and noradrenergic systems, but the interactions between the two pathways remain unclear. OBJECTIVES: The aim of the present work was to investigate the effects of the alpha2-agonist clonidine on ventral tegmental area dopamine neurons during morphine withdrawal syndrome by recording their neuronal activity before and after the administration of low and relatively high doses of clonidine (from 5 to 100 microg/kg). METHODS: The spontaneous neuronal activity of meso-accumbens dopaminergic neurons, identified by antidromical stimulation from the nucleus accumbens, was recorded by use of in vivo extracellular single-unit recordings in control and morphine-withdrawn rats after chronic administration (15 days). RESULTS: Control rats showed a mean spontaneous firing frequency of 2.47+/-0.48 Hz, percentage of burst firing of 22+/-12 and an increase in firing after the administration of cumulative doses of clonidine (5, 10, 20, 40, 100 microg/kg). Conversely, both spontaneous firing rate (1.55+/-0.25 Hz) and the percentage of burst firing (5+/-2) were found to be significantly reduced in rats abstinent for 24 h, and increasing doses of clonidine did not re-establish electrophysiological activity observed in the controls. CONCLUSION: The results indicate that: 1) clonidine did not restore the decreased firing activity of DA neurons in morphine-withdrawn rats, and 2) high doses of clonidine increased firing in control rats but not in morphine-withdrawn rats.[Abstract] [Full Text] [Related] [New Search]