These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression and role of sodium, potassium, chloride cotransport (NKCC1) in mouse inner medullary collecting duct (mIMCD-K2) epithelial cells.
    Author: Glanville M, Kingscote S, Thwaites DT, Simmons NL.
    Journal: Pflugers Arch; 2001 Oct; 443(1):123-31. PubMed ID: 11692276.
    Abstract:
    Loop-diuretic-sensitive 86Rb+(K+) transmembrane fluxes were determined in cells of a mouse inner medullary collecting duct cell line (mIMCD-K2). The furosemide-sensitive (0.1 mM) influx was a substantial fraction of the total influx (0.39+/-0.04 or 0.42+/-0.03, n=5 in the presence or absence of ouabain, respectively). Furosemide also reduced 86Rb+(K+) efflux by a similar fraction (0.46). RT-PCR analysis revealed expression of mRNA for the Na+-K+-2Cl- cortransporter-1 (NKCC1), but not NKCC2. Loop-diuretic-sensitive 86Rb+(K+) influx was confined to the basolateral membrane, confirming its localisation there. The physiological properties of NKCC1 expressed in mIMCD-K2 cells, including the dependence upon medium Na+, K+ and Cl- and the relative sensitivity to loop diuretics as assessed by the concentration required for half-maximal inhibition (IC50) (bumetanide 3.3+/-1.4x10-7 M>piretanide 2.5+/-0.15x10-6 M>furosemide 2.3+/-1.2x10-5 M) were typical for NKCC1. Possible functions of NKCC1 were tested; furosemide did not inhibit the majority of forskolin-stimulated secretory short-circuit current (Isc) (83.5+/-5.3% of the maintained response at 5 min). Secondly, total 86Rb+(K+) influx was stimulated markedly when external osmolarity was increased to 600 mosmol/l by mannitol due to an increase via NKCC1 from 55+/-11 to 191+/-2 nmol/106 cells per 15 min, (both n=4, P<0.01). In contrast, 10-5 M forskolin did not stimulate total 86Rb+(K+) influx. Finally, the ability of both K+ and NH4+ to compete for ouabain-insensitive 86Rb+(K+) influx via NKCC1 was confirmed with similar concentrations for half-maximal influx reduction (K0.5). Apical exposure to NH4+ elicited rapid cytosolic alkalinisation in 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF)-loaded epithelial layers, consistent with selective permeability of the apical membrane to NH3. Conversely, NH4+ (5 mM) at the basal cell surface resulted in progressive acidification, the initial rate being reduced by 43% by furosemide. We conclude that NKCC1 participates in selective uptake of NH4+ at the basal surface, and that IMCD may function in direct NH4+ deposition to urine.
    [Abstract] [Full Text] [Related] [New Search]