These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Retinoic acid protects against hyperoxia-mediated cell-cycle arrest of lung alveolar epithelial cells by preserving late G1 cyclin activities.
    Author: Nabeyrat E, Corroyer S, Besnard V, Cazals-Laville V, Bourbon J, Clement A.
    Journal: Am J Respir Cell Mol Biol; 2001 Oct; 25(4):507-14. PubMed ID: 11694457.
    Abstract:
    The epithelium of the lung alveolus is a major target for oxidant injury, and its proper repair after injury is dependent on the proliferative response of the alveolar epithelial type 2 cells. Recently, we have provided evidence that retinoic acid (RA) stimulates proliferation of type 2 cells. In the present study, we examined the effects of RA on the proliferative response of alveolar type 2 cells exposed to elevated oxygen (O(2)). We showed that pretreatment by RA was able to prevent the growth arrest and cell loss of O(2)-exposed cells. To gain insights into the mechanisms involved, we studied the effects of RA on the cyclin-dependent kinase (CDK) system. The activity of cyclin E-CDK2 complex was found to be decreased in O(2)-exposed cells. Interestingly, this decrease was no longer observed when cells were pretreated with RA. Analysis of p21(CIP1), an inhibitor of CDK, revealed an increased expression in O(2)-exposed cells that was no longer observed in cells treated with RA. These effects were associated with a reduced association of p21(CIP1) with cyclin E-CDK2 complexes in the presence of RA. In addition, studies of Smad activity strongly suggest that the mechanisms through which RA preserves late G(1) cyclin-CDK complex activity may involve interference with the transforming growth factor-beta signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]