These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Developmental distribution of collagen type XII in cartilage: association with articular cartilage and the growth plate.
    Author: Gregory KE, Keene DR, Tufa SF, Lunstrum GP, Morris NP.
    Journal: J Bone Miner Res; 2001 Nov; 16(11):2005-16. PubMed ID: 11697796.
    Abstract:
    Collagen type XII is a member of the fibril-associated collagens and is characterized by a short triple-helical domain with three extended noncollagenous NC3 domains. Previous studies suggested that collagen XII is a component of cartilage but little is known about its spatial-temporal distribution. This study uses a polyclonal antibody to the purified NC3 domain to investigate its developmental distribution in rat forelimb. Collagen XII was present at the joint interzone on embryonic day 16 (E16d) and restricted to the presumptive articular cartilage by E18d. Labeling of the articular surface intensified as development progressed postnatally (day 1 [1d] to 28d) and extended approximately six cell diameters deep. In juvenile rats, collagen XII antibodies also labeled the longitudinal and transverse septa of stacked chondrocytes in the growth plate. However, collagen XII was not associated at any developmental stage with the cartilaginous secondary ossification center and was only weakly expressed in epiphyseal cartilage. Ultrastructural localization of the NC3 domain epitope showed labeling of the surface of collagen II fibrils both in tissue and in isolated fibrils. The results presented provide further evidence that articular cartilage differs substantially from the underlying epiphyseal cartilage and that different chondrocytic developmental fates are reflected in the composition of their extracellular matrix starting early in development. In addition, collagen XII was distributed in areas of cartilage with more organized fibril orientation and may have a role in promoting alignment or stabilizing such an organization, thereby creating a matrix capable of withstanding load-bearing forces.
    [Abstract] [Full Text] [Related] [New Search]