These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of SR-PSOX, a novel cell-surface scavenger receptor for phosphatidylserine and oxidized LDL in human atherosclerotic lesions. Author: Minami M, Kume N, Shimaoka T, Kataoka H, Hayashida K, Akiyama Y, Nagata I, Ando K, Nobuyoshi M, Hanyuu M, Komeda M, Yonehara S, Kita T. Journal: Arterioscler Thromb Vasc Biol; 2001 Nov; 21(11):1796-800. PubMed ID: 11701468. Abstract: Receptor-mediated endocytosis of oxidized low density lipoprotein (Ox-LDL) by macrophages and the subsequent foam cell transformation in the arterial intima are key events in early atherogenesis. Recently, we have identified a novel macrophage cell-surface receptor for Ox-LDL by expression cloning from a cDNA library of phorbol 12-myristate 13-acetate-stimulated THP-1 cells, designated as the scavenger receptor for phosphatidylserine and oxidized lipoprotein (SR-PSOX). Here, we examined SR-PSOX expression in human atherosclerotic lesions. Total cellular RNA and fresh frozen sections were prepared from human carotid endarterectomy specimens (from 21 patients) and directional coronary atherectomy specimens (from 11 patients). Fragments of human aortas of 2 patients without visible atherosclerotic lesions served as negative controls. Quantitative reverse transcription-polymerase chain reaction demonstrated that SR-PSOX mRNA expression was prominent in atherosclerotic lesions but undetectable in normal aortas. Immunohistochemistry showed that SR-PSOX was predominantly expressed by lipid-laden macrophages in the intima of atherosclerotic plaques in carotid endarterectomy and directional coronary atherectomy specimens, although its expression was not detectable in normal arterial wall. Double-labeled immunohistochemistry confirmed that SR-PSOX is expressed by intimal macrophages. Taken together, SR-PSOX may be involved in Ox-LDL uptake and subsequent foam cell transformation in macrophages in vivo and thus may play important roles in human atherosclerotic lesion formation.[Abstract] [Full Text] [Related] [New Search]