These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis. Author: Western TL, Burn J, Tan WL, Skinner DJ, Martin-McCaffrey L, Moffatt BA, Haughn GW. Journal: Plant Physiol; 2001 Nov; 127(3):998-1011. PubMed ID: 11706181. Abstract: In Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type producing extracellular pectinaceous mucilage and a volcano-shaped secondary cell wall. Differentiation involves a regulated series of cytological events including growth, cytoplasmic rearrangement, mucilage synthesis, and secondary cell wall production. We have tested the potential of Arabidopsis seed coat epidermal cells as a model system for the genetic analysis of these processes. A screen for mutants defective in seed mucilage identified five novel genes (MUCILAGE-MODIFIED [MUM]1-5). The seed coat development of these mutants, and that of three previously identified ones (TRANSPARENT TESTA GLABRA1, GLABRA2, and APETALA2) were characterized. Our results show that the genes identified define several events in seed coat differentiation. Although APETALA2 is needed for differentiation of both outer layers of the seed coat, TRANSPARENT TESTA GLABRA1, GLABRA2, and MUM4 are required for complete mucilage synthesis and cytoplasmic rearrangement. MUM3 and MUM5 may be involved in the regulation of mucilage composition, whereas MUM1 and MUM2 appear to play novel roles in post-synthesis cell wall modifications necessary for mucilage extrusion.[Abstract] [Full Text] [Related] [New Search]