These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biosynthesis of vitamin B(6) in yeast: incorporation pattern of glucose. Author: Gupta RN, Hemscheidt T, Sayer BG, Spenser ID. Journal: J Am Chem Soc; 2001 Nov 21; 123(46):11353-9. PubMed ID: 11707109. Abstract: Two yeasts, Saccharomyces cerevisiae ATCC 7752 and Candida utilis ATCC 9256, were incubated in the presence of variously multiply (13)C-labeled samples of D-glucose. The (13)C incorporation pattern within pyridoxamine dihydrochloride, established by (13)C NMR spectroscopy, differed from that which had previously been found within pyridoxine, isolated from Escherichia coli. Thus, the origin of the carbon skeleton of vitamin B(6) in yeast differs substantially from its origin in E. coli. In particular, in yeast the distribution of (13)C within the C(5) chain C-2',2,3,4,4' of pyridoxamine corresponds to the distribution of (13)C within the C(5) chain C-1,2,3,4,5 of the ribose component of cytidine. It follows that the C(5) chains of pyridoxamine and of ribose originate from a common glucose-derived pentulose or pentose intermediate. By contrast, in E. coli the C(5) chain of pyridoxine is derived from 1-deoxy-D-xylulose 5-phosphate which, in turn, originates by condensation of pyruvic acid with glyceraldehyde 3-phosphate.[Abstract] [Full Text] [Related] [New Search]