These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mitochondrial injury by disulfiram: two different mechanisms of the mitochondrial permeability transition.
    Author: Balakirev MY, Zimmer G.
    Journal: Chem Biol Interact; 2001 Dec 21; 138(3):299-311. PubMed ID: 11714485.
    Abstract:
    Disulfiram (Ds), a clinically employed alcohol deterrent of the thiuram disulfide (TD) class of compounds, is known to cause hepatitis and neuropathies. Although this drug has been shown to inhibit different thiol-containing enzymes, the actual mechanism of Ds toxicity is not clear. We have previously demonstrated that Ds impairs the permeability of inner mitochondrial membrane (IMM) [Arch. Biochem. Biophys. 356 (1998) 46]. In this report, the effect of Ds and its structural analogue thiram (Th) on mitochondrial functions was studied in detail. We found that mitochondria metabolize TDs in a NAD(P)H- and GSH-dependent manner. At the concentration above characteristic threshold, TDs induced irreversible oxidation of NAD(P)H and glutathione (GSH) pools, collapse of transmembrane potential, and inhibition of oxidative phosphorylation. The presence of Ca(2+) and exhaustion of mitochondrial glutathione (GSH+GSSG) decreased the threshold concentration of TDs. Swelling of the mitochondria and leakage of non-transported fluorescent dye BCECF from the matrix indicated that TDs induced the mitochondrial permeability transition (MPT). Mitochondrial permeabilization by TDs involves two, apparently distinct mechanisms. In the presence of Ca(2+), TDs produced cylosporin A-sensitive swelling of mitochondria, which was inhibited by ADP and accelerated by carboxyatractyloside (CATR) and phosphate. In contrast, the swelling produced by TDs in the absence of Ca(2+) was not sensitive to cyclosporin A (CsA), ADP and CATR but was inhibited by phosphate. Titration with N-ethylmaleimide revealed that these two mechanisms involve different SH-groups and probably different transport proteins on the IMM. Our findings indicate that at pharmacologically relevant concentrations TDs may cause an irreversible mitochondrial injury as a result of induction of the MPT.
    [Abstract] [Full Text] [Related] [New Search]