These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regional vulnerability after traumatic brain injury: gender differences in mice that overexpress human copper, zinc superoxide dismutase.
    Author: Igarashi T, Huang TT, Noble LJ.
    Journal: Exp Neurol; 2001 Dec; 172(2):332-41. PubMed ID: 11716557.
    Abstract:
    Neuronal loss was quantified in both cortical and subcortical brain regions after traumatic brain injury in male and female nontransgenic (nTg) and transgenic (Tg) mice that overexpress human copper, zinc superoxide dismutase. Mice were euthanized at 7 days after a controlled cortical impact injury. Sections of brain were processed for immunolocalization of NeuN, a neuronal nuclear antigen, and the complement type 3 receptor, a marker of microglia/macrophages, and stained for iron. Cortical lesion volume and neuronal loss in the medial and/or lateral ventroposterior thalamic nuclei were significantly less in the nTg female compared to the nTg male (P = 0.0373 and P = 0.0023, respectively). In contrast, in CA3 of the hippocampus and laterodorsal thalamic nucleus (LD), there were no gender differences in neuronal loss between these nTg groups. Cortical lesion volume was significantly reduced in Tg males compared to nTg males (P = 0.0137) and was unchanged in the Tg females compared to the nTg females. Neuronal loss was attenuated in the CA3 and LD in the Tg females compared to the nTg females (P = 0.0252 and P = 0.0244, respectively). A similar protection was not observed in the Tg males. Microglial activation paralleled the pattern of neuronal loss and was most consistently aligned with iron deposition in the cortex and hippocampus. No overt differences were found in the pattern of microglial activation or iron staining between nTg and Tg mice nor between genders. Our findings demonstrate that neuroprotection, afforded by overexpression of copper, zinc superoxide dismutase, exhibits both regional and gender specificity.
    [Abstract] [Full Text] [Related] [New Search]