These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Estrogen and progesterone metabolites and follicle-stimulating hormone in the aged macaque female. Author: Shideler SE, Gee NA, Chen J, Lasley BL. Journal: Biol Reprod; 2001 Dec; 65(6):1718-25. PubMed ID: 11717133. Abstract: The study presented characterizes the ovarian and pituitary function of the aged female macaque through a complete annual reproductive cycle to compare hormone dynamics during the human and nonhuman primate menopausal transition. Data collected over an entire year from aged macaque females indicated that urinary FSHbeta subunit baseline levels statistically significantly increased in females after age-related abnormal menstrual cycles occurred. These abnormal cycles were followed by anovulation and complete cessation of follicular activity. No statistically significant difference in urinary FSHbeta subunit levels was seen between females that exhibited year-round normal ovarian cycles and those that exhibited seasonal ovarian cycles followed by an interval of anovulation during the nonbreeding season. Basal urinary estrogen metabolite levels were not observed to decrease until ovarian cycles became abnormal and FSHbeta subunit levels began to rise. Early follicular phase circulating inhibin beta levels were statistically significantly reduced only when ovariectomized females were compared to the year-round normally cycling females. A statistically nonsignificant trend toward decreased inhibin secretion, however, was apparent in aged females with normal cycles, aged females with abnormal cycles, anovulatory aged females, and finally, ovariectomized females. Whereas decreased circulating levels of dehydroepiandrosterone sulfate showed a general decline over the 1-yr study period in all groups, they were lowest in the year-round normally cycling group, progressively higher in the normal-to-anovulatory group and abnormal-to-anovulatory group, and highest in the anovulatory group. Finally, the nonbreeding season was associated with the highest number of abnormal cycles, suggesting that onset of complete ovarian senescence in these study macaques was more likely to occur during that time (i.e., females were less likely to return to normal ovarian cycles the following breeding season and more likely to exhibit permanent ovarian quiescence).[Abstract] [Full Text] [Related] [New Search]