These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vascular endothelial growth factor may contribute to increased vascular permeability in acute respiratory distress syndrome. Author: Thickett DR, Armstrong L, Christie SJ, Millar AB. Journal: Am J Respir Crit Care Med; 2001 Nov 01; 164(9):1601-5. PubMed ID: 11719296. Abstract: The development of noncardiogenic pulmonary edema is a characteristic feature of acute respiratory distress syndrome (ARDS). We hypothesized that vascular endothelial growth factor (VEGF) would play an important role in this process. Plasma VEGF was measured in 40 patients with ARDS, 28 at-risk patients, 14 normal control subjects, and 9 ventilated control subjects. Cultured peripheral blood mononuclear cells (PBM) supernatant VEGF was measured in 21 patients with ARDS and 12 at-risk patients, respectively. The functional importance of VEGF as a mediator of endothelial permeability was assessed by measuring albumin flux across human pulmonary endothelial cell monolayers. Plasma VEGF was significantly elevated in patients with ARDS compared with at-risk patients, normal control subjects, and ventilated control subjects (p = 0.01, p = 0.0001, and p = 0.002, respectively). PBM from patients with ARDS produced significantly more VEGF in vitro than at-risk patients (p = 0.05). Albumin flux across human pulmonary endothelial cell monolayers was significantly increased following the addition of plasma from patients with ARDS compared with plasma from normal control subjects (p = 0.008). When VEGF activity in plasma was neutralized by the addition of a soluble VEGF inhibitor, the albumin flux induced by ARDS plasma was reduced by 48%. We conclude that VEGF makes a significant contribution to the endothelial cell permeability-inducing activity in plasma from patients with ARDS, and may play an important role in the development of noncardiogenic pulmonary edema in ARDS.[Abstract] [Full Text] [Related] [New Search]