These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The coenzyme A-dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans. Author: Plaggenborg R, Steinbüchel A, Priefert H. Journal: FEMS Microbiol Lett; 2001 Nov 27; 205(1):9-16. PubMed ID: 11728709. Abstract: The gene loci fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, are involved in the ferulic acid catabolism in Delftia acidovorans. The amino acid sequence deduced from ech exhibited 51% identity to the enoyl-CoA hydratase/aldolase from Pseudomonas sp. strain HR199, indicating that the enzyme from D. acidovorans represents a new lineage of this protein. The genes fcs and ech were expressed in Escherichia coli enabling the recombinant strain to transform ferulic acid to vanillin as revealed by photometric and HPLC analysis. An fcs deficient mutant of D. acidovorans was unable to grow on ferulic acid. The obtained data suggest that in contrast to a previous publication the biotechnologically interesting direct non-oxidative deacetylation mechanism of ferulic acid cleavage is not realized in D. acidovorans. Instead, ferulic acid degradation in D. acidovorans proceeds via a coenzyme A-dependent non-beta-oxidative pathway.[Abstract] [Full Text] [Related] [New Search]