These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of pH-induced transitions of beta-lactoglobulin: ultrasonic, densimetric, and spectroscopic studies.
    Author: Taulier N, Chalikian TV.
    Journal: J Mol Biol; 2001 Dec 07; 314(4):873-89. PubMed ID: 11734004.
    Abstract:
    Depending on solution conditions, beta-lactoglobulin can exist in one of its six pH-dependent structural states. We have characterized the acid and basic-induced conformational transitions between these structural states over the pH range of pH 1 to pH 13. To this end, we have employed high-precision ultrasonic and densimetric measurements coupled with fluorescence and CD spectroscopic data. Our combined spectroscopic and volumetric results have revealed five pH-induced transitions of beta-lactoglobulin between pH 1 and pH 13. The first transition starts at pH 2 and is not completed even at pH 1, our lowest experimental pH. This transition is followed by the dimer-to-monomer transition of beta-lactoglobulin between pH 2.5 and pH 4. The dimer-to-monomer transition is accompanied by decreases in volume, v degrees (-0.008(+/-0.003) cm3 x g(-1)), and adiabatic compressibility, k degrees (S) (-(0.7(+/-0.4))x10(-6) cm3 x g(-1) x bar(-1)). We interpret the observed changes in volume and compressibility associated with the dimer-to-monomer transition of beta-lactoglobulin, in conjunction with X-ray crystallographic data, as suggesting a 7 % increase in protein hydration, with the hydration changes being localized in the area of contact between the two monomeric subunits. The so-called N-to-Q transition of beta-lactoglobulin occurs between pH 4.5 and pH 6 and is accompanied by increases in volume, v degrees (0.004(+/-0.003) cm3 x g(-1)), and compressibility, k degrees (S) ((0.7(+/-0.4))x10(-6) cm3 x g(-1) x bar(-1)). The Tanford transition of beta-lactoglobulin is centered at pH 7.5 and is accompanied by a decrease in volume, v degrees (-0.006(+/-0.003) cm3 x g(-1)), and an increase in compressibility, k degrees (S) ((1.5(+/-0.5))x10(-6) cm3 x g(-1) x bar(-1)). Based on these volumetric results, we propose that the Tanford transition is accompanied by a 5 to 10 % increase in the protein hydration and a loosening of the interior packing of beta-lactoglobulin as reflected in a 12 % increase in its intrinsic compressibility. Finally, above pH 9, the protein undergoes irreversible base-induced unfolding which is accompanied by decreases in v degrees (-0.014(+/-0.003) cm3 x g(-1)) and k degrees (S) (-(7.0(+/-0.5))x10(-6) cm3 x g(-1) x bar(-1)). Combining these results with our CD spectroscopic data, we propose that, in the base-induced unfolded state of beta-lactoglobulin, only 80 % of the surface area of the fully unfolded conformation is exposed to the solvent. Thus, in so far as solvent exposure is concerned, the base-induced unfolded states of beta-lactoglobulin retains some order, with 20 % of its amino acid residues remaining solvent inaccessible.
    [Abstract] [Full Text] [Related] [New Search]