These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of cold acclimation on brown adipose tissue fatty acid synthesis in rats adapted to a high-protein, carbohydrate-free diet.
    Author: Moura MA, Kawashita NH, Brito SM, Brito MN, Kettelhut IC, Migliorini RH.
    Journal: Metabolism; 2001 Dec; 50(12):1493-8. PubMed ID: 11735100.
    Abstract:
    The effect of cold acclimation on brown adipose tissue (BAT) fatty acid synthesis was investigated in rats adapted to a high-protein, carbohydrate-free diet. At an ambient temperature (25 degrees C), rates of fatty acid synthesis in BAT from rats adapted to the high-protein diet were reduced to 27% of rats fed the balanced diet and increased markedly after cold acclimation (10 days at 4 degrees C), although the increase was smaller than in control rats. BAT weight increase induced by cold acclimation was smaller in rats fed the high-protein diet (30%) than in controls (100%). When expressed per whole tissue, maximal activities of BAT glucose-6-phosphate dehydrogenase, malic enzyme, adenosine triphosphate (ATP)-citrate lyase, and acetyl-coenzyme A carboxylase were markedly reduced in high-protein diet-adapted rats at 25 degrees C and increased after cold acclimation in BAT from the 2 groups. However, when expressed per milligram protein, only acetyl-coenzyme A carboxylase showed an increase in both controls and in rats fed the high-protein diet. G6P-dehydrogenase, malic enzyme, and ATP-citrate lyase increased (per milligram protein) only in rats adapted to the high-protein diet and actually decreased in BAT from cold-acclimated control rats. Initial (before activation) pyruvate dehydrogenase (PDH) complex activity was lower in BAT from rats fed the high-protein diet at 25 degrees C and increased in cold-acclimated rats from the 2 groups. Circulating levels of insulin decreased in the 2 groups after cold acclimation. The data suggest that the cold acclimation-induced increase in BAT lipogenesis in rats adapted to the high-protein diet was due to a restoration of sympathetic activity, which induced both BAT hyperplasia and activation of adipocyte free fatty acid (FFA) synthesis, with an important participation of acetyl-coenzyme A carboxylase and pyruvate dehydrogenase.
    [Abstract] [Full Text] [Related] [New Search]