These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tripedal knuckle-walking: a proposal for the evolution of human locomotion and handedness.
    Author: Kelly RE.
    Journal: J Theor Biol; 2001 Dec 07; 213(3):333-58. PubMed ID: 11735285.
    Abstract:
    A comparative morphological analysis of human and non-human hominoids was conducted in an attempt to determine the mode of locomotion of the protohominid. Although the generalized hominoid anatomy permits variation of locomotion: brachiation, knuckle-walking, etc., minor variations in structure determine which behavior is favored. Arboreal arm swinging requires a flexible forelimb while terrestrial fist or knuckle-walking demands more rigidity of the hand and wrist. It is demonstrated that the large human thumb accompanied by the strong adduction of the thenar, hypothenar, and palmar interosseous muscles offer powerful rigidity to the hand, while fusion of the os centrale with the scaphoid during gestation permits the formation of an arch of carpals which imbue the wrist with the stability necessary for weight bearing. Fascialization of the contrahentes and dorsiepitrochlearis muscles in the human as well as depilation of the middle phalanges; the webbing (syndactyly) of the palm; the direction of the fibers of the interosseous membrane of the forearm; the shape of the puerile annular ligament, and the direction of the human glenoid fossa strongly suggest that the ancestor of man used a knuckle-walking form of locomotion prior to becoming bipedal. A model is presented that suggests that bipedalism was attained through an intermediate stage of tripedalism. The model is based on the fact that man's anatomy is much more asymmetric than that of the great apes. A presumption is made that due to the absence of trees for climbing in the transition from forest to open plain, the protohominid needed to carry tools (stones) at all times for protection. Stones could be carried for long distances on the posterior iliac crest since the weight would be shifted posteriorly over the legs. Pick up, medial rotation and adduction of the stone would employ a two-muscle chain of biceps brachii and latissimus dorsi. On the iliac crest, the stone is posterior to the coronal plane of the glenohumeral joint, and with the contraction of this two-muscle chain, the shoulder on one side is moved posteriorly effecting a semi-erect posture. It is proposed that tripedalism of the protohominid may be an explanation for the handedness unique to hominids.
    [Abstract] [Full Text] [Related] [New Search]