These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Do enzymatic hydrolyzability and Simons' stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes? Author: Esteghlalian AR, Bilodeau M, Mansfield SD, Saddler JN. Journal: Biotechnol Prog; 2001; 17(6):1049-54. PubMed ID: 11735439. Abstract: In an attempt to elucidate the impact of substrate accessibility to cellulases on the susceptibility of lignocellulosic substrates to enzymatic hydrolysis, a hydrogen peroxide treated, Douglas fir kraft pulp was dried using several methods with varying levels of intensity. Oven-drying at 50 and 100 degrees C, air-drying, and freeze-drying methods were employed to remove the interfibrillar water from the pulp samples. Subsequently, the never-dried and variably dried pulps were hydrolyzed using a commercial cellulase preparation supplemented with additional beta-glucosidase. Drying reduced the susceptibility of the substrates to enzymatic hydrolysis, which can be attributed to the hornifying effect that drying has on fibers. This effect was more pronounced for the fibers that were oven-dried at 100 degrees C (23% reduction) and 50 degrees C (15% reduction), and there was a good correlation between the Simons's stain results and the enzymatic digestibility of the dried pulps. These observations indicated that drying significantly reduced the population of larger pores and that the partial closure of larger pores created a large number of smaller pores that were not accessible to the displacement dye molecules (orange dye). The inaccessibility of the cellulose to the enzymes, due to the collapse or closure of the large pores, appears to be the primary reason for the lower susceptibility of the dried pulps to enzymatic hydrolysis.[Abstract] [Full Text] [Related] [New Search]