These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of xiao-qing-long-tang (XQLT) on bronchoconstriction and airway eosinophil infiltration in ovalbumin-sensitized guinea pigs: in vivo and in vitro studies.
    Author: Kao ST, Lin CS, Hsieh CC, Hsieh WT, Lin JG.
    Journal: Allergy; 2001 Dec; 56(12):1164-71. PubMed ID: 11736745.
    Abstract:
    BACKGROUND: Xiao-qing-long-tang (XQLT sho-seiru-to), a traditional Chinese medicine, has been used to treat patients with bronchial asthma in Oriental countries for several centuries. However, the therapeutic mechanisms of this Chinese medicine remain a matter of considerable debate. Therefore, a series of experiments using ovalbumin-sensitized guinea pigs was performed to elucidate the possible antiasthmatic effect of XQLT. METHODS: The effect of XQLT on ovalbumin-induced airway inflammation in a guinea pig model of allergic asthma was examined, and early and late asthmatic responses were measured in terms of airway resistance and extent of eosinophil infiltration. Furthermore, the bronchorelaxing effect of XQLT was measured in isolated guinea pig trachea. RESULTS: XQLT significantly inhibited the antigen-induced immediate asthmatic response (IAR) and late asthmatic response (LAR) in actively sensitized guinea pigs. Cumulative administration of XQLT caused concentration-dependent relaxation of the carbachol-precontracted guinea pig trachea. The bronchorelaxing effect of XQLT was reversed by ICI-118551, a selective beta2-adrenoceptor antagonist. Furthermore, examination of bronchoalveolar lavage fluid (BALF) revealed that XQLT significantly suppressed the increase in eosinophils (24 h after antigen challenge) in the airway. In addition, XQLT significantly attenuated the increase in eosinophils at 1, 6, 24, 48, and 72 h after antigen challenge when it was administered once daily from the day of sensitization to the day of challenge. Histopathologic examination results showed that XQLT suppressed eosinophil infiltration into lung tissue. CONCLUSIONS: These results demonstrate that the antiasthmatic effects of XQLT appear to be partly mediated by stimulation of beta2-adrenoceptors, leading to bronchorelaxation, and that XQLT inhibits the infiltration of eosinophils into the airway. Thus, XQLT may be useful for the prevention or treatment of asthma.
    [Abstract] [Full Text] [Related] [New Search]