These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vasopressin rapidly increases phosphorylation of UT-A1 urea transporter in rat IMCDs through PKA. Author: Zhang C, Sands JM, Klein JD. Journal: Am J Physiol Renal Physiol; 2002 Jan; 282(1):F85-90. PubMed ID: 11739116. Abstract: The UT-A1 urea transporter plays an important role in maintaining the hyperosmolar milieu of the inner medulla. Vasopressin increases urea permeability in rat terminal inner medullary collecting ducts (IMCDs) within 5-10 min. To elucidate the mechanism, IMCD suspensions were radiolabeled with [(32)P]orthophosphate. UT-A1 was immunoprecipitated and analyzed by autoradiogram and Western blot. Both the 97- and 117-kDa UT-A1 proteins were phosphorylated. Vasopressin treatment increased the phosphorylation of both UT-A1 proteins at 2 min, which peaked at 5-10 min and remained elevated for up to 30 min. There was a discernable increase in UT-A1 phosphorylation with 10 pM and a 50% increase with 10-100 nM vasopressin. 1-Desamino-8-D-arginine vasopressin (dDAVP) or 8-(4-chlorophenylthio)-cAMP (CPT-cAMP) also increased UT-A1 phosphorylation. The vasopressin-stimulated increase in UT-A1 phosphorylation was blocked by H-89 or a specific peptide inhibitor of protein kinase A. Phosphatase inhibitors (okadaic acid, calyculin) increased UT-A1 phosphorylation. We conclude that vasopressin increases UT-A1 phosphorylation via protein kinase A within 2-5 min in rat IMCDs. This suggests that phosphorylation of UT-A1 may be the mechanism by which vasopressin rapidly increases urea permeability in vivo.[Abstract] [Full Text] [Related] [New Search]