These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Author: Cutler NS, Pan X, Heitman J, Cardenas ME. Journal: Mol Biol Cell; 2001 Dec; 12(12):4103-13. PubMed ID: 11739804. Abstract: Rapamycin binds and inhibits the Tor protein kinases, which function in a nutrient-sensing signal transduction pathway that has been conserved from the yeast Saccharomyces cerevisiae to humans. In yeast cells, the Tor pathway has been implicated in regulating cellular responses to nutrients, including proliferation, translation, transcription, autophagy, and ribosome biogenesis. We report here that rapamycin inhibits pseudohyphal filamentous differentiation of S. cerevisiae in response to nitrogen limitation. Overexpression of Tap42, a protein phosphatase regulatory subunit, restored pseudohyphal growth in cells exposed to rapamycin. The tap42-11 mutation compromised pseudohyphal differentiation and rendered it resistant to rapamycin. Cells lacking the Tap42-regulated protein phosphatase Sit4 exhibited a pseudohyphal growth defect and were markedly hypersensitive to rapamycin. Mutations in other Tap42-regulated phosphatases had no effect on pseudohyphal differentiation. Our findings support a model in which pseudohyphal differentiation is controlled by a nutrient-sensing pathway involving the Tor protein kinases and the Tap42-Sit4 protein phosphatase. Activation of the MAP kinase or cAMP pathways, or mutation of the Sok2 repressor, restored filamentation in rapamycin treated cells, supporting models in which the Tor pathway acts in parallel with these known pathways. Filamentous differentiation of diverse fungi was also blocked by rapamycin, demonstrating that the Tor signaling cascade plays a conserved role in regulating filamentous differentiation in response to nutrients.[Abstract] [Full Text] [Related] [New Search]