These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanical behavior at different temperatures and stresses for superelastic nickel-titanium orthodontic wires having different transformation temperatures. Author: Iijima M, Ohno H, Kawashima I, Endo K, Mizoguchi I. Journal: Dent Mater; 2002 Jan; 18(1):88-93. PubMed ID: 11740969. Abstract: OBJECTIVE: The purpose of this study was to investigate the mechanical properties of superelastic nickel-titanium orthodontic wires under controlled stress and temperature. METHODS: Three different superelastic nickel-titanium wires were examined using differential scanning calorimetry (DSC), three-point bending test and micro X-ray diffraction (micro-XRD). The three-point bending test was carried out at constant temperature (23, 37 and 60 degrees C) and stepwise temperature changes (37-60 degrees C and to 37 degrees C) (37-2 degrees C and to 37 degrees C). Five specimens of each wire were tested. Micro-XRD spectra were measured at the tension side of the wire when the temperature changed from 37 to 60 degrees C or 2 degrees C. RESULTS: The load during the stepwise temperature changes (37-2 degrees C and to 37 degrees C) was consistent with that measured at a corresponding constant temperature. The micro XRD spectrum clearly showed that the austenite phase was transformed to martensite phase when the temperature is decreased from 37 to 2 degrees C. In a stepwise temperature change (37-60 degrees C and to 37 degrees C), the load became higher than the original load at each corresponding constant temperature. However, there was no detectable change in the micro-XRD spectrum when the temperature was increased from 37 to 60 degrees C. SIGNIFICANCE: The superelastic nickel-titanium wires exhibited complicated and unexpected mechanical properties under stepwise temperature change. This study shows the possibility of qualitative analysis using micro-XRD to understand mechanical properties of these nickel-titanium wires.[Abstract] [Full Text] [Related] [New Search]