These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Upstream stimulatory factors binding to an E box motif in the R region of the bovine leukemia virus long terminal repeat stimulates viral gene expression.
    Author: Calomme C, Nguyen TL, de Launoit Y, Kiermer V, Droogmans L, Burny A, Van Lint C.
    Journal: J Biol Chem; 2002 Mar 15; 277(11):8775-89. PubMed ID: 11741930.
    Abstract:
    The bovine leukemia virus (BLV) promoter is located in its 5'-long terminal repeat and is composed of the U3, R, and U5 regions. BLV transcription is regulated by cis-acting elements located in the U3 region, including three 21-bp enhancers required for transactivation of the BLV promoter by the virus-encoded transactivator Tax(BLV). In addition to the U3 cis-acting elements, both the R and U5 regions contain stimulatory sequences. To date, no transcription factor-binding site has been identified in the R region. Here sequence analysis of this region revealed the presence of a potential E box motif (5'-CACGTG-3'). By competition and supershift gel shift assays, we demonstrated that the basic helix-loop-helix transcription factors USF1 and USF2 specifically interacted with this R region E box motif. Mutations abolishing upstream stimulatory factor (USF) binding caused a reproducible decrease in basal or Tax-activated BLV promoter-driven gene expression in transient transfection assays of B-lymphoid cell lines. Cotransfection experiments showed that the USF1 and USF2a transactivators were able to act through the BLV R region E box. Taken together, these results physically and functionally characterize a USF-binding site in the R region of BLV. This E box motif located downstream of the transcription start site constitutes a new positive regulatory element involved in the transcriptional activity of the BLV promoter and could play an important role in virus replication.
    [Abstract] [Full Text] [Related] [New Search]