These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of transepithelial phosphate transport by PTH in chicken proximal tubule epithelium. Author: Dudas PL, Villalobos AR, Gocek-Sutterlin G, Laverty G, Renfro JL. Journal: Am J Physiol Regul Integr Comp Physiol; 2002 Jan; 282(1):R139-46. PubMed ID: 11742832. Abstract: The effect of parathyroid hormone (PTH) and activation of protein kinase C (PKC) and protein kinase A (PKA) on transepithelial P(i) transport was examined in monolayers of chick proximal tubule cells in primary culture (PTCs). Acute exposure of the PTCs to PTH (10(-9) M, basolateral side) significantly decreased the net reabsorption of P(i) by approximately 66%. There was no effect after the addition of PTH to the luminal side. Activation of PKC by phorbol 12-myristate 13-acetate (PMA; 0.1 microM) dramatically decreased net P(i) reabsorption by approximately 60%. Bisindolylmaleimide I (BIM; 1 microM), a highly selective PKC inhibitor, prevented PMA-induced inhibition. Activation of adenylate cyclase/PKA by forskolin (10 microM) mimicked the effect of PTH by significantly reducing net P(i) reabsorption by one-half. Addition of H-89 (10 microM), a potent inhibitor of PKA, abolished forskolin-induced inhibition. PTH inhibition was blocked by either BIM or H-89. Tissue electrophysiology remained stable after all treatments. There was a decreased immunoreactivity of the luminal Na+-P(i) cotransporter NaPi-IIa after PTH treatment. These data indicate that PTH inhibition of P(i) reabsorption in this in vitro system is mediated by PKC and PKA.[Abstract] [Full Text] [Related] [New Search]