These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Author: de Groot BL, Grubmüller H. Journal: Science; 2001 Dec 14; 294(5550):2353-7. PubMed ID: 11743202. Abstract: "Real time" molecular dynamics simulations of water permeation through human aquaporin-1 (AQP1) and the bacterial glycerol facilitator GlpF are presented. We obtained time-resolved, atomic-resolution models of the permeation mechanism across these highly selective membrane channels. Both proteins act as two-stage filters: Conserved fingerprint [asparagine-proline-alanine (NPA)] motifs form a selectivity-determining region; a second (aromatic/arginine) region is proposed to function as a proton filter. Hydrophobic regions near the NPA motifs are rate-limiting water barriers. In AQP1, a fine-tuned water dipole rotation during passage is essential for water selectivity. In GlpF, a glycerol-mediated "induced fit" gating motion is proposed to generate selectivity for glycerol over water.[Abstract] [Full Text] [Related] [New Search]