These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transcriptional regulation of the transforming growth factor beta type II receptor gene by histone acetyltransferase and deacetylase is mediated by NF-Y in human breast cancer cells.
    Author: Park SH, Lee SR, Kim BC, Cho EA, Patel SP, Kang HB, Sausville EA, Nakanishi O, Trepel JB, Lee BI, Kim SJ.
    Journal: J Biol Chem; 2002 Feb 15; 277(7):5168-74. PubMed ID: 11744689.
    Abstract:
    Transcriptional repression of the transforming growth factor-beta (TGF-beta) type II receptor (TbetaRII) gene is one of several mechanisms leading to TGF-beta resistance. Previously, we have shown that MS-275, a synthetic inhibitor of histone deacetylase (HDAC), specifically induces the expression of the TbetaRII gene and restores the TGF-beta signaling in human breast cancer cell lines. However, little is known about the mechanism by which inhibition of HDAC activates TbetaRII expression. MS-275 treatment of cells expressing a wild-type TbetaRII promoter/luciferase construct resulted in a 10-fold induction of the promoter activity. DNA transfection and an electrophoretic mobility shift assay showed that the induction of the TbetaRII promoter by MS-275 requires the inverted CCAAT box and its cognate binding protein, NF-Y. In addition, a DNA affinity pull-down assay indicated that the PCAF protein, a transcriptional coactivator with intrinsic histone acetyltransferase (HAT) activity, is specifically recruited to the NF-Y complex in the presence of either MS-275 or trichostatin A. Based on these results, we suggest that treatment with the HDAC inhibitor induces TbetaRII promoter activity by the recruitment of the PCAF protein to the NF-Y complex, interacting with the inverted CCAAT box in the TbetaRII promoter.
    [Abstract] [Full Text] [Related] [New Search]