These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stabilization of a model formalinized protein antigen encapsulated in poly(lactide-co-glycolide)-based microspheres.
    Author: Jiang W, Schwendeman SP.
    Journal: J Pharm Sci; 2001 Oct; 90(10):1558-69. PubMed ID: 11745714.
    Abstract:
    A formaldehyde-mediated aggregation pathway (FMAP) has been shown to be primarily responsible for the solid-state aggregation of lyophilized formalinized protein antigens [e.g., tetanus toxoid (TT) and formalinized bovine serum albumin (f-BSA)] in the presence of moisture and physiological temperature. Coincorporation of the formaldehyde-interacting amino acid, histidine, strongly inhibits the FMAP. The purpose of this study was to test whether previous solid-state data are applicable toward the stabilization of formalinized antigens encapsulated in poly(lactide-co-glycolide) (PLGA)-based microspheres. Formaldehyde-treated bovine serum albumin (f-BSA) and BSA were selected as a model formalinized protein antigen and a nonformalinized control, respectively. As in the solid state, we found that the FMAP was dominant in the aggregation of f-BSA encapsulated in PLGA 50/50 microspheres, whereas the aggregation mechanism of encapsulated BSA was mostly converted from thiol-disulfide interchange to an acid-catalyzed noncovalent pathway. The lack of noncovalent aggregation in encapsulated f-BSA could be explained by its higher thermodynamic stability after formalinization, which inhibits protein unfolding. Targeting the FMAP, coencapsulation of histidine and trehalose successfully inhibited the aggregation of f-BSA in microspheres. By combining the use of an optimized oil-in-oil (o/o) encapsulation method, coencapsulation of histidine and trehalose, and use of low-acid-content poly(D,L-lactide) (PLA) and poly(ethylene glycol) (PEG) blends, a 2-month continuous release of f-BSA was achieved with the absence of aggregation.
    [Abstract] [Full Text] [Related] [New Search]