These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gamma synuclein: subcellular localization in neuronal and non-neuronal cells and effect on signal transduction. Author: Surguchov A, Palazzo RE, Surgucheva I. Journal: Cell Motil Cytoskeleton; 2001 Aug; 49(4):218-28. PubMed ID: 11746666. Abstract: Synucleins are small, highly conserved proteins in vertebrates, especially abundant in neurons and typically enriched in presynaptic terminals. alpha-Synuclein protein and a fragment of it, called NAC, have been found in association with pathological lesions of neurodegenerative diseases. Recently, mutations in a alpha-synuclein gene have been reported in families susceptible to an inherited form of Parkinson's diseases. In addition, alpha-synuclein has been implicated in the pathophysiology of other neurodegenerative diseases, including Alzheimer's disease and multiple system atrophy. Far less is known about other members of the synuclein family, beta- and gamma-synucleins. gamma-synuclein is up-regulated in several types of cancer and may affect the integrity of the neurofilament network, while its bovine ortholog, synoretin, activates the Elk-1 signal transduction pathway. In this paper, we present data about the localization and properties of human and bovine gamma-synuclein in several neuronal and non-neuronal cell cultures derived from ocular tissues. We show that gamma-synuclein is present in the perinuclear area and is localized to centrosomes in several types of human interphase cells and in bovine retinal pigment epithelium. In mitotic cells, gamma-synuclein staining is localized to the poles of the spindle. Further, overexpression of synoretin in retinoblastoma cells up-regulates MAPK and Elk-1. These results support the view that gamma-synuclein is a centrosome protein that may be involved in signal transduction pathways.[Abstract] [Full Text] [Related] [New Search]