These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of partial liquid ventilation with FC-77 on acute lung injury in newborn piglets.
    Author: Jeng MJ, Kou YR, Sheu CC, Hwang B.
    Journal: Pediatr Pulmonol; 2002 Jan; 33(1):12-21. PubMed ID: 11747255.
    Abstract:
    Partial liquid ventilation (PLV) with various types of perfluorochemicals (PFC) has been shown to be beneficial in treating acute lung injury. FC-77 is a type of PFC with relatively high vapor pressure and evaporative losses during PLV. This study tested the hypothesis that using FC-77 for PLV with hourly replacement is effective in treating acute lung injury. Fifteen neonatal piglets were randomly and evenly divided into 3 study groups: 1) lavage-induced lung injury followed by conventional mechanical ventilation (Lavage-CMV); 2) lavage-induced lung injury followed by PLV using FC-77 with hourly replacement (11.2 +/- 1.5 mL/kg/hr) (Lavage-PLV); and 3) sham lavage injury followed by conventional mechanical ventilation (Control). Immediately after induction, repeated saline lavages induced acute lung injury characterized by decreases in dynamic lung compliance, arterial oxygen tension, and arterial pH, and increases in arterial CO(2) tension and oxygenation index, whereas the sham lavage procedure failed to do so. During the 3-hr period of CMV, these pulmonary and cardiovascular parameters remained stable in the Control group, but deteriorated in the Lavage-CMV group. In contrast, after acute lung injury, low lung compliance, abnormal gas exchange, acidosis, and inadequate oxygenation significantly improved in the Lavage-PLV group. Histological analysis of these 3 study groups revealed that the Lavage-CMV group had the highest lung injury score and the Control group had the lowest. These results suggest that, in comparison to CMV, PLV with FC-77 and hourly replacement of FC-77 promotes more favorable pulmonary mechanics, gas exchange, oxygenation, and lung histology in a piglet model of acute lung injury.
    [Abstract] [Full Text] [Related] [New Search]