These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electron spin resonance investigation of semiquinone radicals formed from the reaction of ubiquinone 0 with human oxyhemoglobin.
    Author: Guo Q, Corbett JT, Yue G, Fann YC, Qian SY, Tomer KB, Mason RP.
    Journal: J Biol Chem; 2002 Feb 22; 277(8):6104-10. PubMed ID: 11748217.
    Abstract:
    The redox properties and thiol reactivity of quinones play critical roles in their therapeutic and toxicological properties. The present study was undertaken to investigate the binding activity of ubiquinone 0 (UQ(0)) to human oxyhemoglobin (HbO(2)) using electron spin resonance (ESR). Addition of UQ(0) to HbO(2) resulted in the immediate detection of a five-line ESR spectrum characteristic of the semiquinone radical of UQ(0) (UQ(0)). With time the HbO(2) adduct with UQ(0), which was characterized by a broad immobilized ESR spectrum, was gradually formed. Matrix-assisted laser desorption/ionization time-of-flight mass spectra analysis showed that UQ(0) bound to the beta-chain of HbO(2). Superoxide dismutase dose-dependently suppressed the intensity of the broad spectrum and accelerated its formation. However, N-ethylmaleimide, a thiol-blocking agent, completely eliminated its formation. The nonspecific protease mixture pronase also prevented its formation and resulted in the gradual appearance of a 4-line spectrum from the 5-line spectrum of UQ(0). The structure of the species responsible for the 4-line spectrum was confirmed and identified by the reaction of UQ(0) with reduced glutathione. In human red blood cells, UQ(0) rapidly bound to glutathione but more slowly to HbO(2). These results suggest that UQ(0) reacted with both ferrous heme and the reactive beta-93 cysteinyl residue of HbO(2) to generate its corresponding semiquinone radical. Subsequently UQ(0) bound to the beta-93 cysteinyl residue of HbO(2) to form a covalent-binding adduct responsible for the broad spectrum.
    [Abstract] [Full Text] [Related] [New Search]