These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetics of the Ca(2+), H(+), and Mg(2+) interaction with the ion-binding sites of the SR Ca-ATPase. Author: Peinelt C, Apell HJ. Journal: Biophys J; 2002 Jan; 82(1 Pt 1):170-81. PubMed ID: 11751306. Abstract: Electrochromic styryl dyes were used to investigate mutually antagonistic effects of Ca(2+) and H(+) on binding of the other ion in the E(1) and P-E(2) states of the SR Ca-ATPase. On the cytoplasmic side of the protein in the absence of Mg(2+) a strictly competitive binding sequence, H(2)E(1) <==> HE(1) <==> E(1) <==> CaE(1) <==> Ca(2)E(1), was found with two Ca(2+) ions bound cooperatively. The apparent equilibrium dissociation constants were in the order of K(1/2)(2 Ca) = 34 nM, K(1/2)(H) = 1 nM and K(1/2)(H(2)) = 1.32 microM. Up to 2 Mg(2+) ions were also able to enter the binding sites electrogenically and to compete with the transported substrate ions (K(1/2)(Mg) = 165 microM, K(1/2)(Mg(2)) = 7.4 mM). In the P-E(2) state, with binding sites facing the lumen of the sarcoplasmatic reticulum, the measured concentration dependence of Ca(2+) and H(+) binding could be described satisfactorily only with a branched reaction scheme in which a mixed state, P-E(2)CaH, exists. From numerical simulations, equilibrium dissociation constants could be determined for Ca(2+) (0.4 mM and 25 mM) and H(+) (2 microM and 10 microM). These simulations reproduced all observed antagonistic concentration dependences. The comparison of the dielectric ion binding in the E(1) and P-E(2) conformations indicates that the transition between both conformations is accompanied by a shift of their (dielectric) position.[Abstract] [Full Text] [Related] [New Search]