These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of endocrine gland-derived vascular endothelial growth factor signaling in adrenal cortex capillary endothelial cells. Author: Lin R, LeCouter J, Kowalski J, Ferrara N. Journal: J Biol Chem; 2002 Mar 08; 277(10):8724-9. PubMed ID: 11751915. Abstract: Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) has been recently identified as a mitogen specific for the endothelium of steroidogenic glands. Here we report a characterization of the signal transduction of EG-VEGF in a responsive cell type, bovine adrenal cortex-derived endothelial (ACE) cells. EG-VEGF led to a time- and dose-dependent phosphorylation of p44/42 MAPK. This effect was blocked by pretreatment with pertussis toxin, suggesting that G alpha(i) plays an important role in mediating EG-VEGF-induced activation of MAPK signaling. The inhibitor of p44/42 MAPK phosphorylation PD 98059 resulted in suppression of both proliferation and migration in response to EG-VEGF. EG-VEGF also increased the phosphorylation of Akt in a phosphatidylinositol 3-kinase-dependent manner. Consistent with such an effect, EG-VEGF was a potent survival factor for ACE cells. We also identified endothelial nitric-oxide synthase as one of the downstream targets of Akt activation. Phosphorylation of endothelial nitric-oxide synthase in ACE cells was stimulated by EG-VEGF with a time course correlated to the Akt phosphorylation. Our data demonstrate that EG-VEGF, possibly through binding to a G-protein coupled receptor, results in the activation of MAPK p44/42 and phosphatidylinositol 3-kinase signaling pathways, leading to proliferation, migration, and survival of responsive endothelial cells.[Abstract] [Full Text] [Related] [New Search]