These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prostaglandin E(2)-mediated activation of HIV-1 long terminal repeat transcription in human T cells necessitates CCAAT/enhancer binding protein (C/EBP) binding sites in addition to cooperative interactions between C/EBPbeta and cyclic adenosine 5'-monophosphate response element binding protein. Author: Dumais N, Bounou S, Olivier M, Tremblay MJ. Journal: J Immunol; 2002 Jan 01; 168(1):274-82. PubMed ID: 11751971. Abstract: Previous work indicates that treatment of human T cells with PGE(2) results in an increase of HIV-1 long terminal repeat (LTR) transcriptional activity. The noticed PGE(2)-mediated activation of virus gene activity required the participation of specific intracellular second messengers such as calcium and two transcription factors, i.e., NF-kappaB and CREB. We report in this work that the nuclear transcription factor CCAAT/enhancer binding protein (C/EBP) is also important for PGE(2)-dependent up-regulation of HIV-1 LTR-driven gene activity. The implication of C/EBP was shown by using a trans-dominant negative inhibitor of C/EBP (i.e., liver-enriched transcriptional inhibitory protein) and several molecular constructs carrying site-directed mutations in the C/EBP binding sites located within the HIV-1 LTR. Mutated HIV-1 LTR constructs also revealed the involvement of the two most proximal C/EBP binding sites. Data from cotransfection experiments with vectors coding for dominant negative mutants and gel mobility shift assays indicated that PGE(2)-mediated induction of HIV-1 LTR activity results from a cooperative interaction between C/EBPbeta and CREB, two members of the basic leucine zipper family of transcription factors. Altogether these findings indicate that treatment of human T cells with PGE(2) induces HIV-1 LTR activity through a complex interplay between C/EBPbeta and CREB. Such a combinatorial regulation may represent a mechanism that permits a fine regulation of HIV-1 expression by PGE(2) in human T cells.[Abstract] [Full Text] [Related] [New Search]