These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Decreased haloperidol-induced potentiation of zif268 mRNA expression in the nucleus accumbens shell and the dorsal lateral striatum of rats lacking cholecystokinin-A receptors.
    Author: Shilling PD, Feifel D.
    Journal: Synapse; 2002 Feb; 43(2):134-8. PubMed ID: 11754493.
    Abstract:
    Evidence suggests that endogenous cholecystokinin (CCK), a neuropeptide that modulates brain dopamine function, may contribute to the therapeutic and motor effects of antipsychotic drugs via activation of CCK-A receptors in the mesolimbic and nigrostriatal pathways, respectively. To determine if CCK modulates the effects of antipsychotic drugs through CCK-A receptors, we measured the haloperidol-induced zif268 mRNA response in the nucleus accumbens (NA) shell, NA core, and dorsal lateral striatum (DLS) in Otsuka Long Evans Tokushima Fatty (OLETF) rats that lack CCK-A receptors due to a spontaneous mutation. OLETF rats and normal Long Evans rats were treated with subcutaneous (s.c.) injections of saline or haloperidol (2 mg/kg). In situ hybridization was performed and zif268 mRNA expression was quantified. The haloperidol-induced expression of zif268 mRNA was significantly decreased in the DLS (P < 0.01) and the NA shell (P < 0.05), but not in the NA core, in OLETF rats compared to LETO rats. These data suggest that CCK-A receptor mechanisms may contribute to the therapeutic and the extrapyramidal motor effects associated with antipsychotic drug treatment.
    [Abstract] [Full Text] [Related] [New Search]