These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl.
    Author: Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB.
    Journal: Carcinogenesis; 2002 Jan; 23(1):143-50. PubMed ID: 11756235.
    Abstract:
    Pharmacologically safe compounds that can inhibit the proliferation of tumor cells have potential as anticancer agents. Curcumin, a diferuloylmethane, is a major active component of the food flavor turmeric (Curcuma longa) that has been shown to inhibit the proliferation of a wide variety of tumor cells. The apoptotic intermediates through which curcumin exhibits its cytotoxic effects against tumor cells are not known, and the participation of antiapoptotic proteins Bcl-2 or Bcl-xl in the curcumin-induced apoptosis pathway is not established. In the present report we investigated the effect of curcumin on the activation of the apoptotic pathway in human acute myelogenous leukemia HL-60 cells and in established stable cell lines expressing Bcl-2 and Bcl-xl. Curcumin inhibited the growth of HL-60 cells (neo) in a dose- and time-dependent manner, whereas Bcl-2 and Bcl-xl-transfected cells were relatively resistant. Curcumin activated caspase-8 and caspase-3 in HL-60 neo cells but not in Bcl-2 and Bcl-xl-transfected cells. Similarly, time-dependent poly(ADP)ribose polymerase (PARP) cleavage by curcumin was observed in neo cells but not in Bcl-2 and Bcl-xl-transfected cells. Curcumin treatment also induced BID cleavage and mitochondrial cytochrome c release in neo cells but not in Bcl-2 and Bcl-xl-transfected cells. In neo HL-60 cells, curcumin also downregulated the expression of cyclooxygenase-2. Because DN-FLICE blocked curcumin-induced apoptosis, caspase-8 must play a critical role. Overall, our results indicate that curcumin induces apoptosis through mitochondrial pathway involving caspase-8, BID cleavage, cytochrome c release, and caspase-3 activation. Our results also suggest that Bcl-2 and Bcl-xl are critical negative regulators of curcumin-induced apoptosis.
    [Abstract] [Full Text] [Related] [New Search]