These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Desferri-exochelin induces death by apoptosis in human breast cancer cells but does not kill normal breast cells.
    Author: Pahl PM, Horwitz MA, Horwitz KB, Horwitz LD.
    Journal: Breast Cancer Res Treat; 2001 Sep; 69(1):69-79. PubMed ID: 11759830.
    Abstract:
    A major goal of cancer chemotherapy is the identification of cytotoxic compounds that are highly selective for cancer cells. We describe here one such compound - a novel iron chelator, desferri-exochelin 772SM. This desferri-exochelin has unique chemical and pharmacological properties, including extremely high iron binding affinity, the capacity to block iron-mediated redox reactions, and lipid solubility which enables it to enter cells rapidly. At low concentrations, this desferri-exochelin kills T47D-YB and MCF-7 human breast cancer cells by inducing apoptosis, but only reversibly arrests the growth of normal human mammary epithelial cells without cytotoxicity. Since iron-loaded exochelin is ineffective, iron chelation accounts for the efficacy of desferri-exochelin. For both the killing of breast cancer cells and the growth arrest of normal breast epithelial cells, desferri-exochelin was effective at much lower concentrations than the lipid-insoluble iron chelator deferoxamine, which has shown only limited potential as an anti-cancer agent. Growth arrest of progesterone receptor positive T47D-YB cells with the progestin R5020 transiently protects them from the cytotoxic effects of desferri-exochelin, but the cells are killed after cell growth resumes. Similarly, MCF-7 cells arrested with the estrogen antagonist ICI182780 are transiently resistant to killing by desferri-exochelin. Thus the desferri-exochelin is cytotoxic only to actively growing tumor cells. Since desferri-exochelin 772SM can selectively and efficiently destroy proliferating cancer cells without damaging normal cells, it may prove useful for the treatment of cancer.
    [Abstract] [Full Text] [Related] [New Search]