These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Author: Briers JD. Journal: Physiol Meas; 2001 Nov; 22(4):R35-66. PubMed ID: 11761081. Abstract: Laser Doppler velocimetry uses the frequency shift produced by the Doppler effect to measure velocity. It can be used to monitor blood flow or other tissue movement in the body. Laser speckle is a random interference effect that gives a grainy appearance to objects illuminated by laser light. If the object consists of individual moving scatterers (such as blood cells), the speckle pattern fluctuates. These fluctuations provide information about the velocity distribution of the scatterers. It can be shown that the speckle and Doppler approaches are different ways of looking at the same phenomenon. Both these techniques measure at a single point. If a map of the velocity distribution is required, some form of scanning must be introduced. This has been done for both time-varying speckle and laser Doppler. However, with the speckle technique it is also possible to devise a full-field technique that gives an instantaneous map of velocities in real time. This review article presents the theory and practice of these techniques using a tutorial approach and compares the relative merits of the scanning and full-field approaches to velocity map imaging. The article concludes with a review of reported applications of these techniques to blood perfusion mapping and imaging.[Abstract] [Full Text] [Related] [New Search]