These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pyrroloquinoline quinone (PQQ) and quinoprotein enzymes. Author: Anthony C. Journal: Antioxid Redox Signal; 2001 Oct; 3(5):757-74. PubMed ID: 11761326. Abstract: This review summarises the characteristics, identification, and measurement of pyrroloquinoline quinone, the prosthetic group of bacterial quinoprotein dehydrogenases whose structures, mechanisms, and electron transport functions are described in detail. Type I alcohol dehydrogenase includes the "classic" methanol dehydrogenase; its x-ray structure and mechanism are discussed in detail. It is likely that its mechanism involves a direct hydride transfer rather than a mechanism involving a covalent adduct. The x-ray structure of a closely related ethanol dehydrogenase is also described. The type II alcohol dehydrogenase is a soluble quinohaemoprotein, having a C-terminal extension containing haem C, which provides an excellent opportunity for the study of intraprotein electron transfer processes. The type III alcohol dehydrogenase is similar but it has two additional subunits (one of which is a multihaem cytochrome c) bound in an unusual way to the periplasmic membrane. One type of glucose dehydrogenase is a soluble quinoprotein whose role in energy transduction is uncertain. Its x-ray structure (in the presence and absence of substrate) is described together with the detailed mechanism, which also involves a direct hydride transfer. The more widely distributed glucose dehydrogenases are integral membrane proteins, bound to the membrane by transmembrane helices at the N-terminus.[Abstract] [Full Text] [Related] [New Search]