These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: On the signal response of various pesticides in electrospray and atmospheric pressure chemical ionization depending on the flow-rate of eluent applied in liquid chromatography-tandem mass spectrometry.
    Author: Asperger A, Efer J, Koal T, Engewald W.
    Journal: J Chromatogr A; 2001 Dec 07; 937(1-2):65-72. PubMed ID: 11765086.
    Abstract:
    The API-MS signal response of several pesticides (atrazine, simazine, isoproturon, diuron, chlorfenvinphos, chlorpyrifos, alachlor, trifluralin) depending on the flow-rate of eluent entering the MS interface was investigated. The investigations were based on API-MS-MS analyses of standard pesticide mixtures in the flow injection mode (FIA) at systematically varied eluent flow-rates using both an ESI interface (Turboionspray) and a heated nebulizer type APCI source. In the result, the individual compounds included in this study showed significant differences in their signal response behaviour depending on the flow-rate of eluent applied. The most hydrophobic compounds among the investigated pesticides (chlorpyrifos and trifluralin) showed drastic losses of sensitivity with increasing eluent flow-rate in both ESI and APCI, while more hydrophilic compounds like atrazine, simazine and isoproturon showed the expected signal response (concentration-sensitive in ESI, mass-flow-sensitive in APCI) at least within a certain range of flow-rates (200-600 microl/min in ESI, 200-2000 microl/min in APCI). These findings lead to the conclusion that application of a programmed HPLC eluent flow-rate may be advantageous to achieve maximum sensitivity of API-MS detection for all pesticides of interest. This is exemplified by the implementation of a flow gradient into an online SPE-HPLC-APCI-MS/MS method for improved analysis of pesticides in drinking water.
    [Abstract] [Full Text] [Related] [New Search]