These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alterations in fatty acid composition of tissue phospholipids in the developing retinal dystrophic rat.
    Author: Alessandri JM, Goustard-Langelier B.
    Journal: Lipids; 2001 Oct; 36(10):1141-52. PubMed ID: 11768159.
    Abstract:
    Alterations in lipid composition occur in the retinal pigment epithelium and photoreceptor cells of the Royal College of Surgeons (RCS) dystrophic rat, a model for inherited retinal degeneration. With respect to lipid composition of nonretinal tissues, the developmental timing of lipid alterations and the incidence of dystrophy are unknown. We determined the fatty acid composition in choline phosphoglycerides (ChoGpl) and ethanolamine phosphoglycerides (EtnGpl) in the brain, liver, and retina from dystrophic RCS rats and from their nondystrophic congenics (controls) at the ages of 3 and 6 wk. At 3 wk, the fatty acid compositions were specific to individual phospholipid classes without any difference between dystrophic and nondystrophic tissues. In plasma phospholipids, there was an age-related increase in the relative contents of monounsaturated and n-3 polyunsaturated fatty acids, with only minor differences between dystrophic and nondystrophic rats. At 6 wk, the fatty acid compositions in ChoGpl and EtnGpl from dystrophic brain and retina were significantly different from those of nondystrophics. The effect of strain on developmental changes in brain fatty acid composition was significant for 18:0 and 22:6n-3 in EtnGpl and for 16:0, 18:0, 18:1n-9, and 20:4n-6 in ChoGpl. The brain ChoGpl fatty acid composition in nondystrophic rats was similar at 6 wk to that of normal rats, and there were almost no postweaning changes in the dystrophics. In retinal phospholipids, the effect of dystrophy was to increase the 20:4n-6 content in EtnGpl and to decrease 22:6n-3 in ChoGpl. The 18:2n-6 and 22:6n-3 contents in dystrophic liver ChoGpl were also significantly affected, while no difference was observed in the EtnGpl fraction. The dystrophy affected the phospholipid fatty acid developmental changes in a tissue- and class-specific manner. Fatty acid metabolism could be selectively altered in neural and nonneural tissues of developing dystrophic RCS rats.
    [Abstract] [Full Text] [Related] [New Search]