These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pharmacokinetic analysis of lectin-dependent biodistribution of fucosylated bovine serum albumin: a possible carrier for Kupffer cells. Author: Opanasopit P, Nishikawa M, Yamashita F, Takakura Y, Hashida M. Journal: J Drug Target; 2001; 9(5):341-51. PubMed ID: 11770704. Abstract: To examine the potential utility of fucosylation of drug carriers for targeted drug delivery to Kupffer cells, the pharmacokinetics of (111)In-labeled fucosylated bovine serum albumin (Fuc-BSA) with different numbers of fucose residues (11, 16, 25, 31 or 41) was studied. After intravenous injection in mice, all (111)In-Fuc-BSAs were mainly delivered to the liver and their hepatic uptake became saturated when the dose was increased. Of these derivatives, only (111)In-Fuc41-BSA showed a slow plasma elimination at low doses, suggesting an interaction with blood components. Examination of binding conditions as well as electrophoretic analysis of the binding components indicated that the serum-type mannan binding protein (MBP) is responsible. Kupffer cells, which possess fucose receptors, showed the highest uptake of (111)In-Fuc41-BSA, followed by endothelial cells and hepatocytes. The hepatic uptake of (111)In-Fuc41-BSA was inhibited by co-injection of Gal42-BSA, but not by Man46-BSA. On the other hand, excess Fuc41-BSA inhibited the hepatic uptake of (111)In-Man46-BSA, while (111)In-Gal42-BSA did not: These findings suggest that not only the fucose receptors on Kupffer cells but also other lectins are involved in the biodistribution of Fuc-BSAs. To understand how the degree of fucose modification affects the binding affinity of Fuc-BSA with hepatic lectins and serum MBP, a pharmacokinetic analysis was performed based on a physiological model. The Michaelis constant of the hepatic uptake of (111)In-Fuc-BSA decreased with an increasing number of fucose units, and the intrinsic hepatic clearance of (111)In-Fuc25-, (111)In-Fuc31- and (111)In-Fuc41-BSAs was close to, or much greater than, the hepatic plasma flow rate, indicating efficient hepatic uptake of these derivatives. These results suggest that fucosylation is a potentially useful method making drug carriers selective for Kupffer cells, although extensive modification might result in retarded delivery due to binding to other lectins like MBP.[Abstract] [Full Text] [Related] [New Search]