These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: DEF-1/ASAP1 is a GTPase-activating protein (GAP) for ARF1 that enhances cell motility through a GAP-dependent mechanism.
    Author: Furman C, Short SM, Subramanian RR, Zetter BR, Roberts TM.
    Journal: J Biol Chem; 2002 Mar 08; 277(10):7962-9. PubMed ID: 11773070.
    Abstract:
    DEF-1/ASAP1 is an ADP-ribosylation factor GTPase-activating protein (ARF GAP) that localizes to focal adhesions and is involved in cytoskeletal regulation. In this paper, we use a cell-based ARF GAP assay to demonstrate that DEF-1 functions as a GAP for ARF1 and not ARF6 in vivo. This degree of substrate preference was unique to DEF-1, as other ARF GAP proteins, ACAP1, ACAP2, and ARFGAP1, were able to function on both ARF1 and ARF6. Since transient overexpression of DEF-1 has been shown to interfere with focal adhesion formation and platelet-derived growth factor-induced membrane ruffling, we investigated whether NIH 3T3 cells stably expressing DEF-1 have altered cell motility. Here we report that ectopic DEF-1 enhances cell migration toward PDGF as well as IGF-1. This chemotactic effect appears to result from a general increase in cell motility, as DEF-1-expressing cells also exhibit enhanced levels of basal and chemokinetic motility. The increase in cell motility is dependent on DEF-1 GAP activity, since a DEF-1 mutant lacking the GAP domain failed to stimulate motility. This suggests that DEF-1 alters cell motility through the deactivation of ARF1. In contrast, the inhibition of cell spreading by DEF-1 was not dependent on GAP activity, indicating that spreading and motility are altered by DEF-1 through different pathways.
    [Abstract] [Full Text] [Related] [New Search]