These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of CtBP in transcriptional repression by the Drosophila giant protein. Author: Strunk B, Struffi P, Wright K, Pabst B, Thomas J, Qin L, Arnosti DN. Journal: Dev Biol; 2001 Nov 15; 239(2):229-40. PubMed ID: 11784031. Abstract: The giant protein is a short-range transcriptional repressor that refines the expression pattern of gap and pair-rule genes in the Drosophila blastoderm embryo. Short-range repressors including knirps, Krüppel, and snail utilize the CtBP cofactor for repression, but it is not known whether a functional interaction with CtBP is a general property of all short-range repressors. We studied giant repression activity in a CtBP mutant and find that this cofactor is required for giant repression of some, but not all, genes. While targets of giant such as the even-skipped stripe 2 enhancer and a synthetic lacZ reporter show clear derepression in the CtBP mutant, another giant target, the hunchback gene, is expressed normally. A more complex situation is seen with regulation of the Krüppel gene, in which one enhancer is repressed by giant in a CtBP-dependent manner, while another is repressed in a CtBP-independent manner. These results demonstrate that giant can repress both via CtBP-dependent and CtBP-independent pathways, and that promoter context is critical for determining giant-CtBP functional interaction. To initiate mechanistic studies of the giant repression activity, we have identified a minimal repression domain within giant that encompasses residues 89-205, including an evolutionarily conserved region bearing a putative CtBP binding motif.[Abstract] [Full Text] [Related] [New Search]