These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells.
    Author: Jung S, Strotmann R, Schultz G, Plant TD.
    Journal: Am J Physiol Cell Physiol; 2002 Feb; 282(2):C347-59. PubMed ID: 11788346.
    Abstract:
    To investigate the possible role of members of the mammalian transient receptor potential (TRP) channel family (TRPC1-7) in vasoconstrictor-induced Ca(2+) entry in vascular smooth muscle cells, we studied [Arg(8)]-vasopressin (AVP)-activated channels in A7r5 aortic smooth muscle cells. AVP induced an increase in free cytosolic Ca(2+) concentration ([Ca(2+)](i)) consisting of Ca(2+) release and Ca(2+) influx. Whole cell recordings revealed the activation of a nonselective cation current with a doubly rectifying current-voltage relation strikingly similar to those described for some heterologously expressed TRPC isoforms. The current was also stimulated by direct activation of G proteins as well as by activation of the phospholipase Cgamma-coupled platelet-derived growth factor receptor. Currents were not activated by store depletion or increased [Ca(2+)](i). Application of 1-oleoyl-2-acetyl-sn-glycerol stimulated the current independently of protein kinase C, a characteristic property of the TRPC3/6/7 subfamily. Like TRPC6-mediated currents, cation currents in A7r5 cells were increased by flufenamate. Northern hybridization revealed mRNA coding for TRPC1 and TRPC6. We therefore suggest that TRPC6 is a molecular component of receptor-stimulated Ca(2+)-permeable cation channels in A7r5 smooth muscle cells.
    [Abstract] [Full Text] [Related] [New Search]