These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mitochondrial ferredoxin is required for heme A synthesis in Saccharomyces cerevisiae.
    Author: Barros MH, Nobrega FG, Tzagoloff A.
    Journal: J Biol Chem; 2002 Mar 22; 277(12):9997-10002. PubMed ID: 11788607.
    Abstract:
    Heme A is a prosthetic group of all eukaryotic and some prokaryotic cytochrome oxidases. This heme differs from heme B (protoheme) at two carbon positions of the porphyrin ring. The synthesis of heme A begins with farnesylation of the vinyl group at carbon C-2 of heme B. The heme O product of this reaction is then converted to heme A by a further oxidation of a methyl to a formyl group on C-8. In a previous study (Barros, M. H., Carlson, C. G., Glerum, D. M., and Tzagoloff, A. (2001) FEBS Lett. 492, 133-138) we proposed that the formyl group is formed by an initial hydroxylation of the C-8 methyl by a three-component monooxygenase consisting of Cox15p, ferredoxin, and ferredoxin reductase. In the present study three lines of evidence confirm a requirement of ferredoxin in heme A synthesis. 1) Temperature-conditional yah1 mutants grown under restrictive conditions display a decrease in heme A relative to heme B. 2) The incorporation of radioactive delta-aminolevulinic acid into heme A is reduced in yah1 ts but not in the wild type after the shift to the restrictive temperature; and 3) the overexpression of Cox15p in cytochrome oxidase mutants that accumulate heme O leads to an increased mitochondrial concentration of heme A. The increase in heme A is greater in mutants that overexpress Cox15p and ferredoxin. These results are consistent with a requirement of ferredoxin and indirectly of ferredoxin reductase in hydroxylation of heme O.
    [Abstract] [Full Text] [Related] [New Search]