These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel pathway for alcoholic fermentation of delta-gluconolactone in the yeast Saccharomyces bulderi. Author: van Dijken JP, van Tuijl A, Luttik MA, Middelhoven WJ, Pronk JT. Journal: J Bacteriol; 2002 Feb; 184(3):672-8. PubMed ID: 11790736. Abstract: Under anaerobic conditions, the yeast Saccharomyces bulderi rapidly ferments delta-gluconolactone to ethanol and carbon dioxide. We propose that a novel pathway for delta-gluconolactone fermentation operates in this yeast. In this pathway, delta-gluconolactone is first reduced to glucose via an NADPH-dependent glucose dehydrogenase (EC 1.1.1.47). After phosphorylation, half of the glucose is metabolized via the pentose phosphate pathway, yielding the NADPH required for the glucose-dehydrogenase reaction. The remaining half of the glucose is dissimilated via glycolysis. Involvement of this novel pathway in delta-gluconolactone fermentation in S. bulderi is supported by several experimental observations. (i) Fermentation of delta-gluconolactone and gluconate occurred only at low pH values, at which a substantial fraction of the substrate is present as delta-gluconolactone. Unlike gluconate, the latter compound is a substrate for glucose dehydrogenase. (ii) High activities of an NADP(+)-dependent glucose dehydrogenase were detected in cell extracts of anaerobic, delta-gluconolactone-grown cultures, but activity of this enzyme was not detected in glucose-grown cells. Gluconate kinase activity in cell extracts was negligible. (iii) During anaerobic growth on delta-gluconolactone, CO(2) production exceeded ethanol production by 35%, indicating that pyruvate decarboxylation was not the sole source of CO(2). (iv) Levels of the pentose phosphate pathway enzymes were 10-fold higher in delta-gluconolactone-grown anaerobic cultures than in glucose-grown cultures, consistent with the proposed involvement of this pathway as a primary dissimilatory route in delta-gluconolactone metabolism.[Abstract] [Full Text] [Related] [New Search]