These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Habitual meal frequency and energy intake regulation in partially temporally isolated men.
    Author: Westerterp-Plantenga MS, Kovacs EM, Melanson KJ.
    Journal: Int J Obes Relat Metab Disord; 2002 Jan; 26(1):102-10. PubMed ID: 11791154.
    Abstract:
    OBJECTIVE: Assessment of a possible relationship between habitual as well as manipulated meal frequency, blood glucose pattern, macronutrient- and energy intake (EI), and energy intake regulation in partially temporally isolated men. DESIGN: A partially temporally isolated within-subject design assessing energy intake regulation in spite of intervention. Intervention consisted of manipulating meal frequency by offering iso-energetic (1 MJ) preloads high in fat or carbohydrate (CHO), with the same energy density. We have previously shown that after a high-CHO preload, inter-meal-interval was 1 h, while after a high-fat preload intermeal-interval was 2 h. SUBJECTS: Twenty healthy young (18-31 y) normal weight (body mass index (BMI): 22.8+/-1.9 kg/m(2)) men. MEASUREMENTS: On two separate days, each after a different preload: subsequent subjects' responses to the preload, eg manipulated meal frequency; continuous blood glucose levels and blood glucose patterns: macronutrient composition of food intake; EI; appetite ratings; and taste perception. From controlled 3-day food intake diaries: habitual meal frequency; EI; and macronutrient-intake. RESULTS: Accuracy of energy intake regulation is expressed as minimizing the difference in energy intake, despite intervention. The difference in 24 h EI on the two test days after the preloads (r(2)=0.56; P<0.001) was a function of habitual meal frequency. Variation in energy intake was primarily explained by habitual meal frequency (r(2)=0.76; P<0.0001). Adding macronutrient composition and number of blood glucose declines to this increased the explained variation to 86 and 96%, respectively. Percentage energy from CHO or from fat explained the variation in habitual meal frequency (r(2)=0.84; P<0.0001). Adding the total number of blood-glucose declines to this increased the explained variation to 88%, and adding average baseline blood glucose levels, sweetness perception and hunger suppression during preload consumption increased the explained variation to 91%. Manipulated meal frequency was related to habitual meal frequency (r(2)=0.86; P<0.0001) and was a function of the number of transient and dynamic blood glucose declines (r(2)=0.74; P<0.0001). CONCLUSION: Habitual meal frequency is of greater significance in energy intake regulation in healthy young men than manipulated meal frequency. Healthy young men with a high habitual meal frequency showed lower 24 h EI, and a smaller difference in EI after macronutrient specific preloads, compared to those with a low habitual meal frequency, thus showing a more accurate energy intake regulation. Habitual meal frequency is based upon a cluster of related factors including macronutrient composition of the food, sweetness perception, hunger suppression, blood glucose declines and average baseline blood glucose levels.
    [Abstract] [Full Text] [Related] [New Search]