These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bisphosphonates suppress bone resorption by a direct effect on early osteoclast precursors without affecting the osteoclastogenic capacity of osteogenic cells: the role of protein geranylgeranylation in the action of nitrogen-containing bisphosphonates on osteoclast precursors. Author: Van Beek ER, Löwik CW, Papapoulos SE. Journal: Bone; 2002 Jan; 30(1):64-70. PubMed ID: 11792566. Abstract: Nitrogen-containing bisphosphonates (NBps) are taken up by osteoclasts and inhibit farnesyl pyrophosphate synthase, an enzyme of the mevalonate pathway. There is evidence, however, that cells other than mature osteoclasts, like osteoclast precursors and osteoblasts, are also involved in the action of Bps on bone resorption in vitro. To examine this issue further, we developed a new in vitro model, which allows the study of the effects of additives on early osteoclast precursors. In this model, osteogenic cells are essential for osteoclastogenesis. The model consists of 15-day-old fetal mouse metatarsals. At time of explantation, these bone rudiments do not yet contain a mineralized matrix or osteoclasts; only early osteoclast precursors are present in the perichondrium. During culture and after the addition of Nabeta-glycerolphosphate, the bones form a mineralized matrix that is consequently resorbed by osteoclasts that develop from their precursors. Short treatment of these explants with Bps, before the formation of a mineralized matrix, resulted in a subsequent dose-dependent inhibition of bone resorption. The relative potencies of eight Bps to suppress resorption were comparable with those observed after the addition of Bps after the formation of a mineralized matrix, the natural target of Bps. In addition, the effects of the NBp olpadronate, but not of clodronate, on osteoclastic resorption, could be partly reversed by geranylgeraniol. Results indicate that Bps can suppress osteoclastic resorption in vitro by a direct action on very early osteoclast precursors at the bone surface, and not by affecting the osteoclastogenic capacity of osteogenic cells. Moreover, the mechanism of action of the NBp olpadronate, but not clodronate, on early tartrate-resistant acid phosphatase-negative osteoclast precursors involves inhibition of protein geranylgeranylation, indicating a molecular mechanism similar to that established for mature osteoclasts.[Abstract] [Full Text] [Related] [New Search]