These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Investigation of phosphatidylethanolamine bilayers by deuterium and phosphorus-31 nuclear magnetic resonance.
    Author: Seelig J, Gally H.
    Journal: Biochemistry; 1976 Nov 30; 15(24):5199-204. PubMed ID: 11810.
    Abstract:
    The motion of the ethanolamine head group in unsonicated lipid bilayers above and below the phase transition is studied by means of deuterium and phosphorus magnetic resonance. For this purpose, dipalmitoyl-3-sn-phosphatidylethanolamine is selectively deuterated at the two ethanolamine carbon atoms. The deuterium quadrupole splittings of the corresponding bilayer phases are measured at pH 5.5 as a function of temperature. In addition, the phosphorus-31 chemical shift anisotropies of planor-oriented and randomly dispersed samples of dipalmitoyl-3-sn-phosphatidylethanolamine are measured at pH 5.5 and 11 by applying a proton-decoupling field. The knowledge of the static chemical shift tensor (Kohler, S.J., and Klein, M.P. (1976), Biochemistry 15, 967) provides the basis for a quantitive analysis of the head-group motion. The nuclear magnetic resonance data are consistent with a model in which the ethanolamine group is rotating flat on the surface of the bilayer with rapid transitions occurring between two enantiomeric conformations.
    [Abstract] [Full Text] [Related] [New Search]