These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of pulmonary surfactant that bears intestinal-type and tissue-nonspecific-type alkaline phosphatase in endotoxin-induced rat bronchoalveolar fluid. Author: Harada T, Koyama I, Shimoi A, Alpers DH, Komoda T. Journal: Cell Tissue Res; 2002 Jan; 307(1):69-77. PubMed ID: 11810315. Abstract: The characteristics of lipopolysaccharide (LPS)-induced alkaline phosphatase (AP) isozymes on the various pulmonary surfactant subtypes were investigated. We used continuous sucrose-gradient centrifugation to separate surfactant into subtypes. The density of each surfactant subtype isolated from LPS-instilled rats was greater than that of the subtypes from the control rats; and the proportion of light surfactant was lower, thereby decreasing the ratio of light to heavy surfactant. The results of an inhibition study revealed the main AP isozyme in bronchoalveolar fluid (BAF) to be tissue-nonspecific AP (TNAP), but some of the activity was characteristic of intestinal-type AP (IAP). IAP, in addition to TNAP and surfactant-associated protein A (SP-A), was detected on heavy surfactant, and LPS induced both APs. To examine the expression of IAP in the lungs, we prepared primers to detect the cDNAs of two types of rat IAP mRNA, IAP-I and -II, and amplified their cDNAs. LPS instillation induced IAP-I mRNA, but not IAP-II mRNA or TNAP mRNA. Immunohistochemical localization of IAP and TNAP revealed reaction products for both in type II cells. The present study thus demonstrated that, in rats, type II cells produce both IAP and TNAP and that these surfactants bearing AP isozymes are secreted into the alveolar space following induction by intratracheal instillation of LPS.[Abstract] [Full Text] [Related] [New Search]