These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Redox/ROS regulation of lipopolysaccharide-induced mitogen-activated protein kinase (MAPK) activation and MAPK-mediated TNF-alpha biosynthesis.
    Author: Haddad JJ, Land SC.
    Journal: Br J Pharmacol; 2002 Jan; 135(2):520-36. PubMed ID: 11815388.
    Abstract:
    Redox and ROS regulation of MAPK-mediated TNF-alpha biosynthesis is not well characterized. It was hypothesized that the involvement of the MAPK pathway in regulating LPS-mediated TNF-alpha secretion is redox-dependent, NF-kappaB-sensitive and attenuated by N-acetyl-L-cysteine (NAC) and other antioxidants. In alveolar epithelial cells, LPS induced a time- and dose-dependent phosphorylation of MAPK(p38). This was associated with the activation of MAPK-activated protein kinase, which phosphorylated the small heat-shock protein, Hsp27. MAPK(p38) inhibition (SB-203580) abrogated LPS-induced TNF-alpha production. MAPK(ERK) blockade (PD-98059) attenuated TNF-alpha secretion, an effect synergistically amplified in the presence of SB-203580. Regulation of NF-kappaB by selective inhibitors revealed that this pathway is partially involved in regulating LPS-mediated TNF-alpha secretion. Whereas the proteasome inhibitor, MG-132, had no effect on LPS-mediated TNF-alpha production, CAPE, sulfasalazine and SN-50, a cell-permeant NF-kappaB inhibitor, attenuated but did not abrogate TNF-alpha biosynthesis. LPS up-regulated ROS, an effect abrogated by 4'-hydroxy-3'-methoxy-acetophenone and NAC, which reduced TNF-alpha secretion, induced the accumulation of GSH, reduced the concentration of GSSG, and blockaded the phosphorylation/activation of MAPK(p38) pathway. ROS induced MAPK(p38) phosphorylation and selective antioxidants, including the permeant GSH precursor, gamma-GCE, reduced ROS-dependent MAPK(p38) phosphorylation. These results indicate that the MAPK pathway and MAPK-mediated regulation of TNF-alpha production is redox-dependent, GSH-mediated and requires, at least in part, a NF-kappaB/ROS-sensitive mechanism.
    [Abstract] [Full Text] [Related] [New Search]