These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dynamic imaging of endoplasmic reticulum Ca2+ concentration in insulin-secreting MIN6 Cells using recombinant targeted cameleons: roles of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)-2 and ryanodine receptors.
    Author: Varadi A, Rutter GA.
    Journal: Diabetes; 2002 Feb; 51 Suppl 1():S190-201. PubMed ID: 11815480.
    Abstract:
    The endoplasmic reticulum (ER) plays a pivotal role in the regulation of cytosolic Ca(2+) concentrations ([Ca(2+)](cyt)) and hence in insulin secretion from pancreatic beta-cells. However, the molecular mechanisms involved in both the uptake and release of Ca(2+) from the ER are only partially defined in these cells, and the presence and regulation of ER ryanodine receptors are a matter of particular controversy. To monitor Ca(2+) fluxes across the ER membrane in single live MIN6 beta-cells, we have imaged changes in the ER intralumenal free Ca(2+) concentration ([Ca(2+)](ER)) using ER-targeted cameleons. Resting [Ca(2+)](ER) (approximately 250 micromol/l) was markedly reduced after suppression (by approximately 40%) of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)-2b but not the SERCA3 isoform by microinjection of antisense oligonucleotides, implicating SERCA2b as the principle ER Ca(2+)-ATPase in this cell type. Nutrient secretagogues that elevated [Ca(2+)](cyt) also increased [Ca(2+)](ER), an effect most marked at the cell periphery, whereas inositol 1,4,5-trisphosphate-generating agents caused a marked and homogenous lowering of [Ca(2+)](ER). Demonstrating the likely presence of ryanodine receptors (RyRs), caffeine and 4-chloro-3-ethylphenol both caused an almost complete emptying of ER Ca(2+) and marked increases in [Ca(2+)](cyt). Furthermore, photolysis of caged cyclic ADP ribose increased [Ca(2+)](cyt), and this effect was largely abolished by emptying ER/Golgi stores with thapsigargin. Expression of RyR protein in living MIN6, INS-1, and primary mouse beta-cells was also confirmed by the specific binding of cell-permeate BODIPY TR-X ryanodine. RyR channels are likely to play an important part in the regulation of intracellular free Ca(2+) changes in the beta-cell and thus in the regulation of insulin secretion.
    [Abstract] [Full Text] [Related] [New Search]